Dark Matter Phenomenology in Two Higgs Doublet Model with Complex Scalar Singlet

Juhi Dutta

in collaboration with Gudrid Moortgat-Pick and Merle Schreiber

Brookhaven Forum 2021 (BF2021)

II. Institute of Theoretical Physics, University of Hamburg

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

November 3, 2021

1/22

Motivation

 Presence of dark matter has been unequivocally established from experimental observations.

• Requisite Dark Matter (DM) candidate \rightarrow electrically neutral, colorless and stable (over the lifetime of the Universe).

- Standard Model (SM) gauge singlet scalars provide a natural candidate for dark matter in extended Higgs sectors such as the Two Higgs doublet model.
- Also explains matter-antimatter asymmetry, provides potential source of CP-violation and gravitational waves.

Dorsch et.al JCAP05 (2017) 052, Drozd et.al JHEP11 (2014) 105, Dev et.al JHEP 09 (2019) 004

The Model

- Consider a softly broken Z_2 symmetric Two Higgs doublet model and conserved Z_2' symmetric singlet scalar potential.
- The quantum numbers of the fields are

Particles	Z_2	Z_2'
Φ ₁	+1	+1
Φ_2	-1	+1
S	+1	-1

Table: The quantum numbers of the Higgs doublets Φ_1 , Φ_2 and complex singlet S under $Z_2 \times Z_2'$.

The Scalar Potential

 $+ h.c) + \frac{\lambda_3''}{4} (S^{\dagger}S)^2$

$$V_{THDMCS} = V_{THDM} + V_S + V_{HS}$$

$$\begin{split} & \textit{V}_{\textit{THDM}} = \textit{m}_{11}^2 \Phi_1^\dagger \Phi_1 + \textit{m}_{22}^2 \Phi_2^\dagger \Phi_2 - (\textit{m}_{12}^2 \Phi_1^\dagger \Phi_2 + \textit{h.c}) + \frac{\lambda_1}{2} (\Phi_1^\dagger \Phi_1)^2 \\ & + \frac{\lambda_2}{2} (\Phi_2^\dagger \Phi_2)^2 + \lambda_3 (\Phi_1^\dagger \Phi_1) (\Phi_2^\dagger \Phi_2) + \lambda_4 (\Phi_1^\dagger \Phi_2) (\Phi_2^\dagger \Phi_1) + (\frac{\lambda_5}{2} (\Phi_1^\dagger \Phi_2)^2 + \textit{h.c.}) \\ & \textit{V}_{\textit{S}} = \textit{m}_{\textit{S}}^2 \textit{S}^\dagger \textit{S} + (\frac{\textit{m}_{\textit{S}'}^2}{2} \textit{S}^2 + \textit{h.c}) + (\frac{\lambda''_1}{24} \textit{S}^4 + \textit{h.c}) + \frac{\lambda''_1}{6} (\textit{S}^2 (\textit{S}^\dagger \textit{S}) \end{split}$$

$$V_{HS} = [S^{\dagger}S(\lambda_1'\Phi_1^{\dagger}\Phi_1 + \lambda_2'\Phi_2^{\dagger}\Phi_2)] + [S^2(\lambda_4'\Phi_1^{\dagger}\Phi_1 + \lambda_5'\Phi_2^{\dagger}\Phi_2) + h.c]$$

Baum, Shah JHEP 12 (044) 2018

• Free parameters of the model are

$$\lambda_1,\lambda_2,\lambda_3,\lambda_4,\lambda_5,m_{12}^2,\alpha,\tan\beta,\lambda_1',\lambda_2',\lambda_4',\lambda_5',\lambda_1'',\lambda_3'',m_S^2,m_{S'}^2$$

- The Higgs sector, after electroweak symmetry breaking, consists of two scalars h, H, pseudoscalar A, and charged higgses H^{\pm} .
- Our focus on Type II THDM where the up-type quarks couple to Φ_2 and down-type quarks and leptons couple to Φ_1 .

Higgs(es) as portal to dark matter

- The dark matter candidate couples to the CP-even higgses at tree-level.
- Relevant couplings of the higgses to the DM,

$$\lambda_{hSS^*} \propto i \frac{1}{\sqrt{1 + \tan^2 \beta}} (\lambda_1' \sin \alpha - \lambda_2' \cos \alpha \tan \beta)$$

$$\lambda_{\mathit{HSS}^*} \propto -i rac{1}{\sqrt{1+ an^2eta}} (\lambda_1'\coslpha + \lambda_2'\sinlpha aneta)$$

Here, v is the vacuum expectation value (vev) such that $v^2 = v_1^2 + v_2^2$ where v_i (i=1,2) refers to the vev's of the Higgs doublets Φ_i and $\tan \beta = \frac{v_2}{v_1}$.

Relic Density

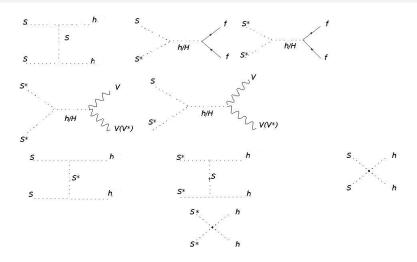
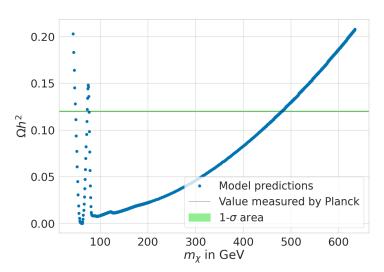


Figure: Some Feynmann diagrams contributing to relic density.

Phenomenological constraints


- Relic density upper bound from Planck.
- Spin independent (SI) DM-nucleon direct detection cross section from XENON-1T.
- The lightest CP-even Higgs mass constraints from LHC.
- Collider limits on heavy higgses from LHC and LEP.
- Flavour physics constraints: BR(B $\rightarrow s\gamma$), BR(B $\rightarrow \mu^+\mu^-$).

Simulation details

Model implementation/adoption in the following codes:

- Model building: SARAH
- Spectrum Generator: SARAH-SPheno
- DM constraints: micrOMEGAs
- Higgs constraints: HiggsBounds and HiggsSignals
- Flavour constraints and tree-level unitarity constraints: SPheno

Constraints from relic density

Direct detection cross-section

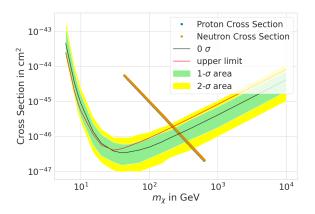


Figure: Variation of the direct detection cross-section against mass of the dark matter candidate, m_{χ} .

Variation of other parameters

- Low DM mass regions severely constrained from Xenon-1T data.
- Recall, the higgs couples to the DM via the portal couplings λ_1', λ_2' and $\tan \beta$.
- Vary each of these parameters to determine the allowed region of parameter space.

Strongest effect on the direct-detection cross section of λ_2' and $\tan \beta$.

Figure: Variation of the direct detection cross section with m_{χ} for varying λ_2' for two values of $\tan \beta = 5,20$ (left,right).

 \implies low λ_2' satisfies σ^{SI} easily.

Direct detection cross-section

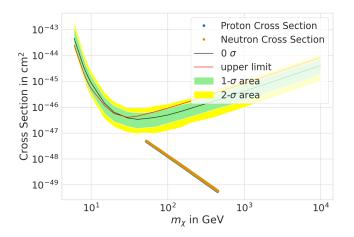


Figure: Variation of Direct detection cross-sections with the mass of the DM.

Representative benchmarks

Parameters	BP1	BP2	BP3
λ_1	0.23	0.1	0.23
λ_2	0.25	0.26	0.26
λ_3	0.39	0.10	0.2
λ_4	-0.17	-0.10	-0.14
λ_5	0.001	0.10	0.10
$m_{12}^2 \; (\text{GeV}^2)$	-1.0×10^{5}	-1.0×10^{5}	-1.0×10^{5}
	0.1	0.1	0.1
$\lambda_3^{\prime\prime\prime}$	0.1	0.1	0.1
$\lambda_1'' \ \lambda_3'' \ \lambda_1' \ \lambda_2'$	0.042	0.04	2.0
λ_2^7	0.042	0.001	0.01
λ_4^7	0.1	0.1	0.1
λ_5'	0.1	0.1	0.1
m _h (GeV)	125.09	125.09	125.09
m_H (GeV)	724.4	816.4	821.7
m_A (GeV)	724.4	812.6	817.9
$m_{H^{\pm}}$ (GeV)	728.3	816.3	822.2
aneta	4.9	6.5	6.5
m_{DM} (GeV)	338.0	76.7	323.6
Ωh^2	0.058	0.119	0.05
$\sigma_{SI}^p \times 10^{10} \text{ (pb)}$	0.76	0.052	2.9
$\sigma_{SI}^p imes 10^{10} ext{ (pb)} $ $\sigma_{SI}^n imes 10^{10} ext{ (pb)} $	0.78	0.054	3.1

Decay modes of the Higgses

Decay Channels	Branching ratios for		
	BP1	BP2	BP3
$H o bar{b}$	0.14	0.29	0.24
H o tar t	0.83	0.66	0.68
H o auar au	0.02	0.45	0.04
$H o \chiar\chi$	0.0	0.0	0.05
$A o bar{b}$	0.12	0.27	0.27
${\it A} \rightarrow t \bar{t}$	0.86	0.69	0.69
$ extit{A} ightarrow au ar{ au}$	0.02	0.04	0.04
${\it H^{\pm}} ightarrow t ar{b}$	0.97	0.96	0.96
$ extstyle H^\pm o auar u_ au$	0.022	0.03	0.03

Table: Dominant decay modes of the heavy higgses for the benchmarks BP1, BP2 and BP3.

Presence of invisible modes \rightarrow source of missing energy at colliders.

Collider probes: At LHC (ongoing)

- Important production modes: gluon fusion (ggF), vector boson fusion (VBF), ZH
- Dominant SM backgrounds: $W + j_1Z + j_1$, QCD, $t\bar{t}$, $h + jj_1$, diboson channels

Summary

- We explore models with two higgs doublet and extra SM singlet complex scalar dark matter (DM) as compared to the SM.
- Such a model is motivated from baryogenesis, gravitational waves, dark matter and inflationary point of view.
- The Higgs sector consists of h, H, A, H^{\pm} where h, H is the CP-even scalar and A, pseudoscalar and the singlet as the DM candidate.
- The DM candidate interacts with the SM particles only via the higgses.
- Possible to obtain suitable parameter points allowed by DM, Higgs and flavour constraints, with representative benchmark points in light and heavy mass regions.

Thank you!

Backup

Scan parameters

Parameters	Values	
λ_1	0.23	
λ_2	0.25	
λ_3	0.39	
λ_4	-0.17	
λ_5	0.001	
m_{12}^2	-1.0×10^{5}	
$\lambda_1^{\prime\prime\prime}$	0.1	
$\lambda_3^{\dagger\prime}$	0.1	
λ_1^{\prime}	0.042	
λ_2^{\dagger}	0.042	
λ_{4}^{7}	0.1	
λ_5^7	0.1	
$m_{12}^2 \ \lambda_1'' \ \lambda_3'' \ \lambda_1' \ \lambda_2' \ \lambda_4' \ \lambda_5' \ m_{5}^2$	1.13×10^{5}	
m_h	125.1	
m_H	724.4	
m_A	724.4	
$m_{H^{\pm}}$	728.3	
$tan \beta$	5	

Table: List of parameters kept fixed for the scans for relic density.